A Proposal to Use Power from Marine Solar-Thermal Injection Power System to Drive a Seawater Desalination-Electrolysis Plant
Abstract
In order to enable the unlimited use of thermal energy from fluids in natural environment, the need for a completely new power cycle arose that would be the most efficient and could generate power from low temperature sources (e.g. seas, lakes or atmosphere). The idea to apply an injector (ejector or thermal compressor) in a power cycle led to the discovery of the Injection Power Cycle (IPC). As the efficiency of conventional Thermal Compressor (TC) was not sufficient to allow the operation of the IPC in real conditions, a cooling stream was introduced into the conventional TC. In this way the compression of Working Fluid (WF) is intensified resulting in an increase of overall efficiency of TC. However, the efficiency of the IPC was still slightly below the efficiency of the Rankine Power Cycle (RPC). In order to further increase the efficiency of IPC, the external turbine is shifted into the TC allowing the use of full heat potential of the total mass flow of WF through the TC. That is how the IPC became the most efficient power cycle. Finally, the author proposes to use power from marine solar-thermal power generation system based on the IPC to drive a seawater desalination-electrolysis plant in order to produce potable water and/or Hydrogen.